首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   16篇
  国内免费   25篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   8篇
  2020年   10篇
  2019年   7篇
  2018年   6篇
  2017年   9篇
  2016年   10篇
  2015年   10篇
  2014年   9篇
  2013年   12篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   14篇
  2005年   5篇
  2004年   10篇
  2003年   12篇
  2002年   11篇
  2001年   7篇
  2000年   14篇
  1999年   2篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1993年   9篇
  1992年   3篇
  1991年   7篇
  1990年   4篇
  1989年   9篇
  1988年   13篇
  1987年   4篇
  1986年   3篇
  1985年   5篇
  1984年   6篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
排序方式: 共有319条查询结果,搜索用时 20 毫秒
1.
Plasma membrane vesicles with H+-ATPase activity were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots using an aqueous polymer two-phase system. Of several detergents tested, only lysophosphatidylcholine solubilized the H+-ATPase in an active form. Solubilization of the H+-ATPase with lysophosphatidylcholine was possible in the absence of glycerol, but the ATPase activity decreased about 4–5 times as rapidly in the absence as in the presence of 30% (w/v) glycerol. The solubilized enzyme was further stabilized by ATP and protons. Addition of 1 m M ATP to the plasma membranes halted inactivation of the H+-ATPase. Even in the absence of polyol compounds and ATP, the enzyme was stable for hours at relatively low pH with an optimum around pH 6.7 at room temperature. The curve for the stability of soluble H+-ATPase as a function of pH closely resembles the pH curve for the activity of the H+-ATPase. This suggests that binding of protons to transport sites may stabilize the soluble H+-ATPase in an enzymatically active form.  相似文献   
2.
The stomatal response to blue light (BL) in wheat seedlings ( Triticum aestivum L. cv. Starke II, Weibull) was enhanced by background red light (R). This enhancement was only slightly affected by the addition of background far-red light (FR). Under similar light treatments, the addition of FR induced a 43% transformation from the far-red-absorbing form towards the red-absorbing form of phytochrome from etiolated oat ( Avena sativa L. cv. Sol II), immobilized on phenyl-sepharose. Furthermore, the enhancement of the stomatal BL-response by 15 min R was not reversed by a subsequent irradiation with 5 min FR. It is concluded that the red-light-enhancement of the stomatal blue-light-response in wheat seedlings does not involve a change in the photostationary state of phytochrome.  相似文献   
3.
Plasma membrane vesicles were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots in an aqueous polymer two-phase system. The plasma membranes possessed high specific ATPase activity [ca 4 μmol P1 (mg protein)−1 min−1 at 37°C]. Addition of lysophosphatidylcholine (lyso-PC) produced a 2–3 fold activation of the plasma membrane ATPase, an effect due both to exposure of latent ATP binding sites and to a true activation of the enzyme. Lipid activation increased the affinity for ATP and caused a shift of the pH optimum of the H+ -ATPase activity to 6.75 as compared to pH 6.45 for the negative H+-ATPase. Activation was dependent on the chain length of the acyl group of the lyso-PC, with maximal activition obtained by palmitoyl lyso-PC. Free fatty acids also activated the membrane-bound H+-ATPase. This activation was also dependent on chain length and to the degree of unsaturation, with linolenic and arachidonic acid as the most efficient fatty acids. Exogenously added PC was hydrolyzed to lyso-PC and free fatty acids by an enzyme in the plasma membrane preparation, presumably of the phospholipase A type. Both lyso-PC and free fatty acids are products of phospholipase A2 (EC 3.1.1.4) action, and addition of phospholipase A2 from animal sources increased the H+-ATPase activity within seconds. Interaction with lipids and fatty acids could thus be part of the regulatory system for H+-ATPase activity in vivo, and the endogenous phospholipase may be involved in the regulation of the H+-ATPase activity in the plasma membranne.  相似文献   
4.
Induction and release of secondary dormancy in genetically pure dormant (AN-51, Mont 73) and non-dormant (CS-40, SH-430) lines of wild oat ( Avena fatua L.) were studied. These lines differed with regard to the optimal period of anaerobiosis necessary for induction of dormancy, and/or the degree (% of seeds acquiring dormancy) and duration of the dormancy induced. Secondary dormancy could be induced more effectively in the after-ripened seeds of dormant lines than in the non-dormant lines, where only a short-term dormancy could be induced (in 5–7 week-old-seeds). Higher anaerobiosis temperatures were more effective in inducing dormancy in all lines studied. Thus, as with primary dormancy, wild oat biotypes exhibit genetic variability in their secondary dormancy behaviour and factors like temperature can modify the expression of this trait.
The germination stimulants kinetin, isopentenyl adenine, sodium azide, potassium nitrate, ethanol and substituted phthalimides, which break primary dormancy in wild oats, stimulated germination of secondarily dormant seeds (line AN-51). Since these chemicals are structurally diverse, primary and secondary dormancies appear to be similar in part in their regulation.
Salicylhydroxamic acid, an inhibitor of cyanide-insensitive (alternative) respiration, did not inhibit: 1, spontaneous release of secondary dormancy in the line SH-430; and 2, stimulation of germination of secondarily dormant AN-51 seeds by various chemicals (except azide), suggesting that this respiratory pathway is not necessary for the release of induced dormancy.  相似文献   
5.
6.
Graminaceous species can enhance iron (Fe) acquisition from sparingly soluble inorganic Fe(III) compounds by release of phytosiderophores (PS) which mobilize Fe(III) by chelation. In most graminaceous species Fe deficiency increases the rate of PS release from roots by a factor of 10–20, but in some species, for example sorghum, this increase is much less. The chemical nature of PS can differ between species and even cultivars.The various PS are similarly effective as the microbial siderophore Desferal (ferrioxamine B methane sulfonate) in mobilizing Fe(III) from a calcareous soil. Under the same conditions the synthetic chelator DTPA (diaethylenetriamine pentaacetic acid) is ineffective.The rate of Fe(III)PS uptake by roots of graminaceous species increases by a factor of about 5 under Fe deficiency. In contrast, uptake of Fe from both synthetic and microbial Fe(III) chelates is much lower and not affected by the Fe nutritional status of the plants. This indicates that in graminaceous species under Fe deficiency a specific uptake system for FePS is activated. In contrast, the specific uptake system for FePS is absent in dicots. In a given graminaceous species the uptake rates of the various FePS are similar, but vary between species by a factor of upto 3. In sorghum, despite the low rate of PS release, the rate of FePS uptake is particularly high.The results indicate that release of PS and subsequent uptake of FePS are under different genetic control. The high susceptibility of sorghum to Fe deficiency (lime-chlorosis) is most probably caused by low rates of PS release in the early seedling stage. Therefore in sorghum, and presumably other graminaceous species also, an increase in resistance to lime chlorosis could be best achieved by breeding for cultivars with high rates of PS release. In corresponding screening procedures attention should be paid to the effects of iron nutritional status and daytime on PS release as well as on rapid microbial degradation of PS.  相似文献   
7.
Biosynthesis of polyamines in plants is controlled primarily by the enzymes ornithine decarboxylase (EC 4.1.1.17) and arginine decarboxylase (ADC: EC 4.1.1.19), which are responsible for the production of putrescine, and S -adenosyl-L-methionine (SAM) decarboxylase (EC 4.1.1.50) that is necessary for the formation of spermidine and spermine (Spm). Little is known about the metabolic or molecular mechanisms regulating the synthesis of these enzymes. We have studied the regulation of ADC synthesis by Spm in osmotically-stressed oat ( Avena sativa L. ev. Victory) leaves, using a polyclonal antibody to oat ADC and a cDNA clone encoding oat ADC. Treatment with Spm in combination with osmotic stress resulted in increased steady-state levels of ADC mRNA, yet the levels of ADC activity decreased. This absence of correlation is explained by the fact that Spm inhibits processing of the ADC proenzyme, which results in increased levels of this inactive ADC form and a consequent decrease in the ADC-processed form. Spermine treatment leads to delayed loss of chlorophyll in dark-incubated and osmotically-treated oat leaves. Thus, post-translational regulation of ADC synthesis by Spm may be important in explaining its anti-senescence properties.  相似文献   
8.
Gravitropically-stimulated seedlings show autotropism in weightlessness   总被引:1,自引:0,他引:1  
In a spaceflight experiment, autotropism by oat ( Avena sativa L.) coleoptiles following gravitropic responses was prominent in weightlessness: counter-reactions led to the straightening of the curved coleoptiles. This was not the case during clinorotation on earth. The autotropic reactions appeared to be related to the stimulus received during the stimulus period, i.e. the greater the response the greater the autotropic counter-reaction. Previous models of the gravitropic system which predicted that coleoptiles would not straighten in weightlessness are disproved. A modification to one of the models is proposed which includes the autotropic response observed in spaceflight. The nature of the counter-reactions in the absence of gravitropic stimulation is discussed.  相似文献   
9.
Nonstructural carbohydrates in dormant and afterripened wild oat caryopses   总被引:1,自引:0,他引:1  
Nonstructural carbohydrates were determined in both embryo and endosperm of dormant (nongerminating) and afterripened (germinating) intact caryopses of wild oat ( Avena fatua L.). No changes in endosperm starch or soluble sugar were observed at the onset of germination (18 h). No changes in glucose, fructose, sucrose or starch within dormant or afterripened embryos correlated with onset of visual germination. In afterripened embryos, depletion of raffinose (18 h), stachyose (18 h) and galactose (24 h) was correlated with germination. In contrast, raffinose-family oligosaccharide levels in dormant embryos remained constant for 7 days following imbibition. Germination of isolated dormant embryos on 88 m M galactose-containing media was accompanied by decreased endogenous levels of raffinose and stachyose. Isolated embryos from dormant caryopses incorporated 14C from 14C-fructose into both raffinose and stachyose during 24 h of imbibition. In contrast, no 14C incorporation into stachyose was observed in embryos from afterripened caryopses. No 14C incorporation into raffinose was observed at 18 and 24 h. When in vitro activities of α galactosidase were measured, no temporal differences between dormant or afterripened caryopses were detected in either embryo or endosperm tissue. Although the mechanism associated with differences in utilization of raffinose and stachyose is yet unidentified, alterations in raffinose-family oligosaccharide metabolism in the embryo appear to be a unique prerequisite for afterripening-induced germination.  相似文献   
10.
A sequential extraction procedure was employed to determine the soil fractions, and assess plant availability of Cr, Cu, Ni, Pb and Zn in a Glynwood silt loam amended with five rates (0, 30, 60, 120 and 240 metric tons/ha) of composted municipal solid waste (CMSW) or composted sewage sludge (CSS) cropped to oats (Avena sativa). The application of the composts tended to shift the solid phase forms of the metals away from those extractable with HNO3 to those extractable with NaOH and EDTA. The more labile fractions (KNO3 and H2O extracts) of the metals typically decreased with application of CMSW and CSS. Crop dry matter increased at the 30 and 60 MT/ha CMSW rates by 142 and 152%, respectively, after which yields declined to below control values. Yields at all rates of CSS declined. The CMSW and CSS had an insignificant effect on concentrations of Cr and Pb in oat tissue, but tissue levels of Cu, Ni and Zn increased with increased rate of compost application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号